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Yajing Zhang, Yangyang Feng, Shuyou Yu, and Hong Chen 

Abstract A large terminal set of model predictive control results in a large region 
of attraction of the closed-loop systems, which can help to reduce the computational 
burden of the involved optimization problem. In this paper, a novel scheme is pro-
posed to obtain a terminal set and a terminal penalty of nonlinear model predictive 
control. Firstly, the nonlinear system is approximated through the Koopman operator 
theory, whereby a linear system with unknown but bounded disturbances is gener-
ated. Then, a polytopic terminal set is obtained accordingly, where the nonlinear 
system is described by a linear model with disturbances. The effectiveness of the 
proposed scheme is demonstrated using a benchmark problem. 

Keywords Terminal set · Nonlinear model predictive control · Koopman operator 
theory 

18.1 Introduction 

Model predictive control (MPC), referred to as receding-horizon control, is a widely 
used optimization-based control scheme. Solving an optimization problem by mea-
suring the system state at each moment, a finite horizon control sequence is obtained 
accordingly. Only the first element of the obtained control sequence is applied to 
the system. At the next moment, the complete process is repeated with the updated 
system state. 
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MPC with guaranteed nominal stability [ 1, 2] is one of the most important model 
predictive control schemes, where a terminal constraint set and a terminal penalty are 
imposed in order to guarantee asymptotic stability. Furthermore, specific construc-
tions of the terminal set and the terminal penalty are provided with the assumption 
of Lipschitz continuity. A large terminal set results in a large region of attraction 
for the closed-loop system, which can also reduce the online computational burden. 
Generally, however, finding a non-conservative terminal penalty and a terminal set 
is not an easy task. An approach to obtain a terminal set is developed based on 
a linear-quadratic regulator designed in the neighborhood of the origin, where the 
higher order nonlinear effect of the system is assumed to be bounded [ 3, 4]. Thus, 
it leads to a method of calculating terminal set for a large dimensional system, and 
terminal penalty of nonlinear systems [ 5], where extra degrees are added to reduce 
the conservativeness of the offline optimization problem. 
Machine learning techniques are adopted to construct a tailored quadratic and 

convex terminal cost which approximates the cost-to-go function of constrained 
linear model predictive control frameworks [ 6, 7]. An algorithm is proposed, which 
learns the terminal penalty and adjusts the MPC parameters based on a stability metric 
[ 8]. The terminal penalty is formulated as a Lyapunov function neural network with 
the aim of recovering or enlarging the attraction region of the initial demonstrator 
using a short prediction horizon. Learning-based method is adopted to construct the 
terminal penalty by linking it to an infinite-horizon optimal control problem, where 
the Lyapunov function is the optimal cost [ 9]. 
Recently, Koopman operator theory is increasingly prevalent in engineered sys-

tem design and data analysis. In this paper, motivated by linear model identification 
for control [ 10, 11], a scheme for solving the terminal set of nonlinear model pre-
dictive control is proposed. First, approximate the nonlinear system using a linear 
model with unknown but bounded disturbances, which act additively on the state 
and control inputs. Then, results are presented which permit the calculation of a 
maximal robust positively invariant set of discrete-time linear time-invariant system 
with disturbances. The maximal robust positively invariant set, also known as the 
0-reachable set, is designated as the terminal set. 
The remainder of the paper has the following structure. Section 18.2 defines the 

problem setup, and introduces the preliminaries. Section 18.3 presents the main 
results, including Koopman operator-based linear systems with disturbances, termi-
nal sets of nonlinear model predictive control with a Koopman operator. To demon-
strate the effectiveness of the proposed scheme, a simulation example is provided in 
Sect. 18.4. Section 18.5 concludes the paper.
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18.2 Problem Setup and Preliminaries 

Consider a discrete-time nonlinear system 

.zk+1 = f (zk, vk) (18.1) 

where .zk ∈ Rn is the state and .vk ∈ Rm is the manipulation input at the moment . k. 
The state and control inputs are subject to the following constraints: 

.zk ∈ Z, k ≥ 0 , (18.2a) 

.vk ∈ V, k ≥ 0 , (18.2b) 

where .Z ⊆ Rn and .V ⊆ Rm are the admissible sets of .zk and . vk , respectively. 
Suppose that the system state.zk is measured instantaneously, and there is neither 

model perturbation nor external disturbance at all. 
Furthermore, the following assumptions are made: 

Assumption 18.1 The point .(0, 0) ∈ Rn × Rm is an equilibrium point of sys-
tem (18.1), i.e., . f (0, 0) = 0, and . f : Rn × Rm −→ Rn is continuously differen-
tiable. 

Assumption 18.2 The sets of .Z and . V are compact, and .(0, 0) ∈ Z × V . 

At the moment . k, a finite-horizon open-loop optimization problem is defined as 
follows: 

Problem 18.1 

. minimize
Vk

C(zk, Vk)

s.t.

zk+i+1|k = f (zk+i |k, vk+i |k), zk|k = zk, i ∈ N[0,Np−1], (18.3a) 

.zk+i |k ∈ Z, i ∈ N[1,Np−1], (18.3b) 

.vk+i |k ∈ V, i ∈ N[0,Np−1], (18.3c) 

.zk+Np |k ∈ Z f , (18.3d) 

where the cost functional 

.C(zk, Vk) =
Np−1

i=0
zk+i |k

2
Ē vk+i |k

2
F̄ zk+Np |k

2
Ḡ (18.4) 

and .Vk := {vk|k, vk+1|k , . . . , vk+Np−1|k} denotes the .Np-step control sequence, . Ē ∈
Rn×n and .F̄ ∈ Rm×m are positive definite weighting matrices. The index . N denotes
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the set of positive integers and.N[1,Np−1] as the integers.1, 2, ..., Np . The index. k + i |k
denotes the values at the moment .k + i predicted at time . k, .i ∈ N[1,Np−1]. The  term  
.Z f is the terminal constraints set, . z 2

Ḡ
is the terminal penalty. Both .Z f and . z 2

Ḡ
will be determined in Sect. 18.3. 
At the moment . k, a optimal control sequence 

.V ∗
k := {v∗k|k, v∗k+1|k, . . . , v∗k+Np−1|k} (18.5) 

is determined by solving Problem 18.1. However, only the first control element . v∗k|k
is applied to the system. At the next moment .k + 1, the whole process is repeated 
with the new measurement of the system states. 
Note that at the moment . k, the control sequence .Vk is feasible for Problem 18.1, 

and suppose that 

(i) constraints (18.3b)–(18.3d) are satisfied; 
(ii) the cost function (18.4) is finite, i.e., .C(zk, Vk) <∞. 

At the equilibrium point .(0, 0), the Jacobian linearization of system (18.1) is  

.zk+1 = Azk + Bvk, (18.6) 

where .A := ∂ f
∂z |(0,0) and .B := ∂ f

∂v
|(0,0). 

Assumption 18.3 System (18.6) is stabilizable. 

Assumption 18.3 implies that a linear feedback control law.v = KJ z can be deter-
mined such that .Ak := A + BK J is asymptoticly stable. Without loss of generality, 
assume further that .Ak has at least one non-zero eigenvalue. 
The following lemma guarantees the existence of the terminal control law .K J z, 

the terminal set .Z f , and the terminal penalty . z 2
Ḡ
[ 12, 13]. Note that the terminal 

control law .K J z is only used to determine .Z f and . z 2
Ḡ
, and never be applied to 

system (18.1). 

Lemma 18.1 Suppose that Assumptions 18.1, 18.2 and Assumption 18.3 hold, and 
denote .σmax(Ak) as the maximum eigenvalues of matrix .Ak. Then, 
(1) There exists a unique positive definite matrix .Ḡ such that 

.κ2AT
k Ḡ Ak − Ḡ = −(Ē + K T

J F̄ K J ) (18.7) 

where .κ ∈ 1, 1
σmax(Ak )

. 

(2) There exists a level set .Z f ⊆ Z, and 

.Z f := z ∈ Rn | zT Ḡz ≤ β, β > 0 ,
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such that 

(1) .K J z ∈ V for any .z ∈ Z f . 
(2) .Z f is a positive invariant set for the original nonlinear system (18.1), i.e., with 

the feedback control law .v = K J z, .zk+1 ∈ Z f for any .zk ∈ Z f . 
(3) for all .z0 ∈ Z f , and for the system (18.1), with the linear feedback control law 

. v = K J z

.

∞

i=0
zi |0

2
Ē vi |0

2
F̄ ≤ zT Ḡz, (18.8) 

where .z0|0 = z0 and .vi |0 = KJ zi |0. 

18.3 Terminal Set of Nonlinear Systems Based 
on Koopman Operators 

The Koopman operator is a way to handle nonlinear systems through a globally 
linear representation [ 14]. In principle, the Koopman operator transforms a finite-
dimensional nonlinear system into an infinite-dimensional linear system. Alterna-
tively, a finite approximation through a linear system with disturbances provides an 
effective tool on analysis and synthesis of nonlinear control systems. 
For nonlinear systems (18.1), the Koopman operator . is defined as follows: 

. zk) = ξ(zk+1) = ξ( f (zk, vk)), (18.9) 

where .ξ(·) is an observation function. 
The dynamic mode decomposition (DMD) method provides a finite-dimensional 

approximation to the Koopman operator . [ 15]. The state and input data in the 
DMD algorithm need to be collected from the nonlinear system. Then, the state 
matrix identification is 

.

ZD = [ z1 z2 · · · zM ]
Z+

D = [ z2 z3 · · · zM+1 ]
VD = [ v1 v2 · · · vM ],

(18.10) 

where .ZD ∈ Rn×M , .Z+
D ∈ Rn×M , .VD ∈ Rm×M , and .M is an integer. 

The linear approximation of the nonlinear dynamics can be expressed as 

.Z+
D = AD ZD + BDVD = AD BD

ZD

VD
= G (18.11) 

where .G = AD BD and . = Z D VD
T
. 

Note that the state matrix.G can be obtained by solving the following least-square 
optimization problem:
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.minimi ze Z+
D − G F , (18.12) 

where . · F denotes the Frobenius norm. 
The problem (18.12) can be solved using the pseudo-inverse matrix of . , i.e.: 

.G = Z+
D

†, (18.13) 

where . † denotes the Moore-pseudo-inverse. 
The singular value decomposition of . is as follows: 

. = Z D VD
T

= U V T ,

where .U ∈ R(n+m)×(n+m), . ∈ R(n+m)×(n+m), and .V ∈ RM×(n+m). 
Then, matrix .G can be obtained by the following approximation: 

. G ≈ ZDV −1U T

= ZDV −1 U1 U2
T
,

where .U1 ∈ R(n+m)×n , .U2 ∈ R(n+m)×m . 
That is, 

. AD ≈ ÃD = ZDV −1U1
T

BD ≈ B̃D = ZDV −1U2
T .

Rewrite .Z+
D = AD ZD + BDVD as 

. [ z2 z3 · · · zM+1 ] = AD[ z1 z2 · · · zM ] + BD[ v1 v2 · · · vM ].

Then, the linear model of the nonlinear system can be obtained as 

.zk+1 = ÃDzk + B̃Dvk + wk , (18.14) 

where .wk is the deviation between true value and its approximate value of sys-
tem (18.1). Note that the presence of modeling error .wk is unavoidable due to the 
finite-dimensional approximation using the Koopman operator theory. 
Assume that .wk is amplitude bounded, namely: 

. wk ∈W= wk ∈Rn : wk ∞ ≤ wmax ,

where .W is a compact set and.0 ∈W .
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18.3.1 Terminal Set of Nonlinear Systems 

For the Koopman linear model (18.14), assume that there exists a feedback control 
law.v = KDz such that .Ak

D := ÃD + B̃D KD is asymptotically stable. Define. Q∗
D =

Ē + K T
D F̄ KD , then the terminal gain .KD and the terminal matrix .PD satisfy [ 16] 

. Ak
D

T
PD Ak

D − PD ≤ −Q∗
D (18.15) 

with .PD ∈ Rn×n and .PD is positive definite. 
Based on the Koopman linear model with the bounded disturbance.wk , a maximal 

robust positive invariant set can be chosen as the terminal set. The maximal robust 
positive invariant set is defined as follows. 

Definition 18.1 (Robust positive invariant set [ 17]): The set .Z̃ f is a robust positive 
invariant set of the uncertain system (18.14), if. ÃD + B̃D KD zk + wk ∈ Z̃ f for any 

.zk ∈ Z̃ f and .wk ∈W. 

Definition 18.2 (Maximal robust positive invariant set [ 17]): The robust positive 
invariant set .Z̃ f is the maximal robust positive invariant set of the uncertain sys-
tem (18.14), if .Z̃ f is included in all robust positive invariant set of the uncertain 
system (18.14). 

The maximal and polytopic positive invariant set can be described as 

. Z̃ f := z ∈ Rn|At z ≤ bt , At ∈ Rn×n, bt ∈ Rn .

Note that in order to obtain the maximal robust positive invariant set, the one-step 
backward reachable operator is defined as follows[ 17]: 

.Pre ( )={zk ∈Z|∃KDzk ∈V : (AD+BD KD) zk + wk ∈ ∀wk ∈W} , (18.16) 

where . is a robust positive invariant set of system (18.14),.Pre ( ) is referred to as 
the one-step backward reachable set of the set. . Note that.Pre ( ) can be computed 
by Multi-Parametric Toolbox 3 [ 18]. 
By using (18.16), a maximal robust positive invariant set is computed by the 

iteration of Algorithm 18.1. Further, the terminal set of the nonlinear system (18.1) 
can be obtained by choosing [ 17] 

. Z̃ f := ∞, (18.17) 

where . ∞ is the maximum robust position invariant set of system (18.1), and the 
terminal set .Z̃ f satisfies [ 17] 

(i) .Z̃ f ⊆ Z , .Z̃ f is closed and the equilibrium point .(0, 0) ∈ Z̃ f ; 
(ii) .vk = KDzk ⊆ V , for all .zk ∈ Z̃ f ;
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Algorithm 18.1 Computation of the terminal set . Z̃ f

Input: . Z, . V , .W , . KD
Output: The terminal set. Z̃ f
1: Initialization.. 0 = Z. 
2: Iteration procedure. At any moment.k ≥ 0,. k+1 = k ∩ Pre ( k)

3: End condition. If. k+1 = k , then set. ∞ = k+1,.Z̃ f := ∞. Else, set.k = k + 1, and go to 
Step 2. 

(iii) .Ak
Dzk ∈ Z̃ f . 

Remark 18.1 Both the invariance of terminal sets and the cost from the end of the 
prediction horizon to infinity are guaranteed by the terminal control law.KDz, where 
the linear control gain .KD is calculated by (18.15) offline. 

18.4 Numerical Example 

In this section, a nonlinear system is used to verify the effectiveness of the proposed 
scheme, in which dynamics is 

.
ż1k+1 = z1k + 0.1z2k + 0.1vk(µ+ (1− µ)z1k)

ż2k+1 = z2k + 0.1z1k + 0.1vk(µ− 4(1− µ)z2k)
(18.18) 

where.µ ∈ (0, 1). Terms of.z = z1 z2
T
and. v represent the state and input, respec-

tively. Note that the nonlinear system (18.18) is unstable and its linearized system is 
stabilizable. Moreover, the input and state of the system (18.18) are constrained as 

. 

−2 ≤ v ≤ 2
−1
−1

≤
z1k
z2k

≤
1

1
.

Scenario 18.1 The parameter .µ = 0.5. 
The collected datasets consist of 20 episodes, each containing data of 400 time 

steps. The initial state is randomly chosen within the range of.[−1, 1], and the control 
input is within the range of .[−2, 2]. 
The matrices. ÃD , .B̃D , and the bounded disturbance.wk by the Koopman operator 

theory are calculated as 

. ÃD=
1.0150 0.0965
0.0693 1.0379

, B̃D=
0.0500
0.1035

, wk ∞≤0.1.
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The weighting matrices .Ē and .F̄ in the optimization problem of MPC are given 
as 

. Ē= 0.5 0
0 0.5

, F̄=1.

Further, the terminal gain .KD and the terminal matrix .PD are calculated offline 
by (18.15), and 

. KD= 1.3006 1.6392 , PD == 12.1326 8.6059
8.6059 13.8252

.

As a comparison, the matrices .A and .B by the Jacobian linearization method at 
the equilibrium point .(0, 0) are calculated as 

. A= 1.005 0.1002
0.1002 1.0005

, B= 0.0526
0.0526

.

Similarly, the terminal gain .K J and the terminal matrix .Ḡ are calculated using 
Lemma 18.1, that is, 

. K J= 2.118 2.118 , Ḡ == 16.5926 11.359
11.359 16.5926

, β=0.7.

Under the same input, a simulation experiment is implemented to compare the 
evolution of the nonlinear system (18.18), the Koopman linear system, and the Jaco-
bian linearization system. The simulation results are shown in Fig. 18.1. It can be seen 
that the Koopman linear model and the Jacobian linearization model can accurately 
approximate the nonlinear system (18.18). 
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Fig. 18.1 Scenario 18.1 Validation of the Koopman linear model and the Jacobian linearization 
model (.µ = 0.5)
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Fig. 18.2 Simulation results of Scenario 18.1 for the initial state .z0 = [0.774 − 0.222]T and the 
prediction horizon. Np = 15

The terminal set .Z̃ f computed based on the Koopman linear model with the 
bounded disturbance .wk and the terminal set .Z f computed based on the Jacobian 
linearization model are shown in Fig. 18.2a. It can be found that the terminal set 
.Z̃ f computed based on the Koopman linear model is larger. Figure 18.2b–d shows 
the evolution of control input, and the dynamic response of the system at the initial 
state .z0 = [0.774 − 0.222]T , while the prediction horizon .Np = 15. The dynamic 
response of the system with the terminal ingredients obtained based on the Koopman 
linear model is marked as the red solid line, and the dynamic response of the system 
with the terminal ingredients obtained based on the Jacobian linearization model 
is marked as the blue dashed line. It can be observed that the dynamic response 
trajectory of the system can asymptotically converge to the equilibrium point within 
the control input limitations. 
Figure 18.3 shows the dynamic response of the system at the initial state . z0 =

[1 − 1]T , while the prediction horizon.Np = 10. Figure 18.3a shows that the control
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Fig. 18.3 Simulation results of Scenario 18.1 for the initial state.z0 = [1 − 1]T and the prediction 
horizon. Np = 10

Fig. 18.4 Simulation results of Scenario 18.1 for the initial state.z0 = [1 − 1]T and the prediction 
horizon. Np = 5

inputs at the initial moment solved by the Problem 18.1 with the terminal ingredients 
obtained based on the Koopman linear model is smoother than using the terminal 
ingredients obtained based on the Jacobian linearization model. However, while the 
prediction horizon .Np = 5, Problem 18.1 with the terminal ingredients obtained 
based on the Jacobian linearization model has no feasible solution at the initial 
moment. Problem 18.1 with the terminal ingredients obtained based on the Koopman 
linear model has feasible solution at the initial time instant. Figure 18.4 shows the 
simulation results of the proposed control scheme for the initial state. z0 = [1 − 1]T
while .Np = 5. 

Scenario 18.2 The parameter .µ = 0.8. 
The collected datasets consist of 25 episodes, each containing data of 610 time 

steps. The initial state is randomly chosen within the range of.[−1, 1], and the control 
input is allowed within the range of .[−2, 2]. 
The matrices . ÃD , .B̃D and the bounded disturbance .wk by the Koopman operator 

theory are calculated as 

. ÃD=
1.0061 0.0993
0.0968 1.0130

, B̃D=
0.0840
0.0875

, wk ∞≤0.1.
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The weighting matrices . Ē , .F̄ and the prediction horizon .Np in the optimization 
problem of MPC are given as 

. Ē= 1 0
0 1

, F̄=1, Np=15.

Further, the terminal gain .KD and the terminal matrix .PD are calculated by (18.15) 
offline, that is, 

. KD= 1.3116 1.3718 , PD == 10.0617 7.4326
7.4326 10.7298

.

As a comparison, the matrices .A and .B by the Jacobian linearization method at 
the equilibrium point .(0, 0) are calculated as 

. A= 1.005 0.1002
0.1002 1.0005

, B= 0.0841
0.0841

.

Similarly, the terminal gain .K J and the terminal matrix .Ḡ are calculated using 
Lemma 18.1 as 

. K J= 1.2901 1.3062 , Ḡ == 9.6999 6.9486
6.9486 9.8201

, β=5.2035.

While .µ = 0.8, the simulation experimental result is shown in Figs. 18.5 and 
18.6. Figure 18.5 shows that the Koopman linear model and the Jacobian linearization 
model can accurately approximate the nonlinear system (18.18) under Scenario 18.2. 
Figure 18.4a shows that the proposed method can obtain a larger terminal set under 

Fig. 18.5 Scenario 18.2 Validation of the Koopman linear model and the Jacobian linearization 
model (.µ = 0.8)
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Fig. 18.6 Simulation results of Scenario 18.2 for the initial state .z0 = [−0.98 − 0.82]T and the 
prediction horizon. Np = 15

Scenario 18.2. Figure 18.4b–d shows that the dynamic response trajectory of the 
system can asymptotically converge to the equilibrium point under the control input 
limitations, where the initial state of the system is set as .z0 = [−0.98 − 0.82]T . 

18.5 Conclusion 

In this paper, a scheme to solve the terminal set of model predictive control of non-
linear systems with constraints was proposed. The considered nonlinear system was 
approximated by a Koopman operator dynamics model, which was a linear system 
with bounded disturbances. Then, an algorithm to offline determine the terminal cost, 
terminal set, and terminal control law was developed, where the terminal set was a
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maximal robust invariant set of the linear dynamical model with the terminal control 
law, and the terminal penalty was the related cost function. A simulation example 
under different scenarios demonstrated the effectiveness of the proposed scheme. 

Funding This work was supported by the National Natural Science Foundation of 
China (No. U62473167) and the Science Foundation of Jilin Province 
(No.20240402079GH), China. 
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