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Terminal Set of Nonlinear Model Cischia
Predictive Control with Koopman

Operators

Yajing Zhang, Yangyang Feng, Shuyou Yu, and Hong Chen

Abstract A large terminal set of model predictive control results in a large region
of attraction of the closed-loop systems, which can help to reduce the computational
burden of the involved optimization problem. In this paper, a novel scheme is pro-
posed to obtain a terminal set and a terminal penalty of nonlinear model predictive
control. Firstly, the nonlinear system is approximated through the Koopman operator
theory, whereby a linear system with unknown but bounded disturbances is gener-
ated. Then, a polytopic terminal set is obtained accordingly, where the nonlinear
system is described by a linear model with disturbances. The effectiveness of the
proposed scheme is demonstrated using a benchmark problem.

Keywords Terminal set - Nonlinear model predictive control -+ Koopman operator
theory

18.1 Introduction

Model predictive control (MPC), referred to as receding-horizon control, is a widely
used optimization-based control scheme. Solving an optimization problem by mea-
suring the system state at each moment, a finite horizon control sequence is obtained
accordingly. Only the first element of the obtained control sequence is applied to
the system. At the next moment, the complete process is repeated with the updated
system state.
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MPC with guaranteed nominal stability [1, 2] is one of the most important model
predictive control schemes, where a terminal constraint set and a terminal penalty are
imposed in order to guarantee asymptotic stability. Furthermore, specific construc-
tions of the terminal set and the terminal penalty are provided with the assumption
of Lipschitz continuity. A large terminal set results in a large region of attraction
for the closed-loop system, which can also reduce the online computational burden.
Generally, however, finding a non-conservative terminal penalty and a terminal set
is not an easy task. An approach to obtain a terminal set is developed based on
a linear-quadratic regulator designed in the neighborhood of the origin, where the
higher order nonlinear effect of the system is assumed to be bounded [3, 4]. Thus,
it leads to a method of calculating terminal set for a large dimensional system, and
terminal penalty of nonlinear systems [5], where extra degrees are added to reduce
the conservativeness of the offline optimization problem.

Machine learning techniques are adopted to construct a tailored quadratic and
convex terminal cost which approximates the cost-to-go function of constrained
linear model predictive control frameworks [6, 7]. An algorithm is proposed, which
learns the terminal penalty and adjusts the MPC parameters based on a stability metric
[8]. The terminal penalty is formulated as a Lyapunov function neural network with
the aim of recovering or enlarging the attraction region of the initial demonstrator
using a short prediction horizon. Learning-based method is adopted to construct the
terminal penalty by linking it to an infinite-horizon optimal control problem, where
the Lyapunov function is the optimal cost [9].

Recently, Koopman operator theory is increasingly prevalent in engineered sys-
tem design and data analysis. In this paper, motivated by linear model identification
for control [10, 11], a scheme for solving the terminal set of nonlinear model pre-
dictive control is proposed. First, approximate the nonlinear system using a linear
model with unknown but bounded disturbances, which act additively on the state
and control inputs. Then, results are presented which permit the calculation of a
maximal robust positively invariant set of discrete-time linear time-invariant system
with disturbances. The maximal robust positively invariant set, also known as the
O-reachable set, is designated as the terminal set.

The remainder of the paper has the following structure. Section 18.2 defines the
problem setup, and introduces the preliminaries. Section 18.3 presents the main
results, including Koopman operator-based linear systems with disturbances, termi-
nal sets of nonlinear model predictive control with a Koopman operator. To demon-
strate the effectiveness of the proposed scheme, a simulation example is provided in
Sect. 18.4. Section 18.5 concludes the paper.
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18.2 Problem Setup and Preliminaries

Consider a discrete-time nonlinear system

Zkt1 = f (2k, Vi) (18.1)

where z; € R” is the state and v, € R™ is the manipulation input at the moment k.
The state and control inputs are subject to the following constraints:

weZ, k>0, (18.2a)
v eV, k>0, (18.2b)

where Z C R" and V C R™ are the admissible sets of z; and vy, respectively.
Suppose that the system state z; is measured instantaneously, and there is neither
model perturbation nor external disturbance at all.
Furthermore, the following assumptions are made:

Assumption 18.1 The point (0,0) € R” x R™ is an equilibrium point of sys-
tem (18.1), i.e., £(0,0) =0, and f : R" x R" — R”" is continuously differen-
tiable.

Assumption 18.2 The sets of Z and V are compact, and (0,0) € Z x V.

At the moment k, a finite-horizon open-loop optimization problem is defined as
follows:

Problem 18.1

min%/mize C(zk, Vi)
k

S.t.

Zitittik = f @hiter Verie)s 2k = 2 1 € Npow,—115 (18.3a)
Zk+ilk € Z, i € Ny, -1, (18.3b)
Vktik € V, i € Nown,-11, (18.3¢)
Zk+N, ik € Ly, (18.3d)

where the cost functional

N,—1
2 2 2
C@ Vi) = > Nzksitells + 10esie s + lzesw, wlls (18.4)
i=0
and Vi := {vkj, Vks1ks - - - » Vkrn,—1k} denotes the N,-step control sequence, E €

R and F e R™ ™ are positive definite weighting matrices. The index N denotes
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the set of positive integers and N N,—1]88 theintegers 1, 2, ..., N,. Theindex k + ik
denotes the values at the moment k + i predicted at time k, i € Ny y,—1). The term
Zy is the terminal constraints set, ||z||%-; is the terminal penalty. Both Z ; and ||Z||%—;
will be determined in Sect. 18.3.

At the moment k, a optimal control sequence

Vi o= ke Ve - -0 Ven, -1t (18.5)

is determined by solving Problem 18.1. However, only the first control element vy,
is applied to the system. At the next moment k + 1, the whole process is repeated
with the new measurement of the system states.

Note that at the moment k, the control sequence V} is feasible for Problem 18.1,
and suppose that

(1) constraints (18.3b)—(18.3d) are satisfied;
(ii) the cost function (18.4) is finite, i.e., C(zx, Vi) < o0.

At the equilibrium point (0, 0), the Jacobian linearization of system (18.1) is
Zk+1 = Azy + By, (18.6)

where A := %l(0,0) and B := %I(o,o).
Assumption 18.3 System (18.6) is stabilizable.

Assumption 18.3 implies that a linear feedback control law v = K ;z can be deter-
mined such that A; := A + BK is asymptoticly stable. Without loss of generality,
assume further that A; has at least one non-zero eigenvalue.

The following lemma guarantees the existence of the terminal control law K, z,
the terminal set Z ¢, and the terminal penalty ||z||é [12, 13]. Note that the terminal
control law Kz is only used to determine Z; and lz||%, and never be applied to
system (18.1).

Lemma 18.1 Suppose that Assumptions 18.1, 18.2 and Assumption 18.3 hold, and
denote oymx (Ax) as the maximum eigenvalues of matrix Ay. Then,
(1) There exists a unique positive definite matrix G such that

kK*AlGA,— G =—(E + KTFK}) (18.7)

where k € (1, m>
(2) There exists a level set Zy C Z, and

Zy={zeR"|'Gz< B, B >0},
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such that

(1) K;z €V foranyz € Zy.

(2) Zy is a positive invariant set for the original nonlinear system (18.1), i.e., with
the feedback control law v = K jz, zxk41 € Ly for any z € Zy.

(3) forall zo € Zy, and for the system (18.1), with the linear feedback control law
V= KJZ

> lzily + llvioll3 < 2" Gz, (18.8)
i=0

where 200 = zo and v;p = K jz;o.

18.3 Terminal Set of Nonlinear Systems Based
on Koopman Operators

The Koopman operator is a way to handle nonlinear systems through a globally
linear representation [14]. In principle, the Koopman operator transforms a finite-
dimensional nonlinear system into an infinite-dimensional linear system. Alterna-
tively, a finite approximation through a linear system with disturbances provides an
effective tool on analysis and synthesis of nonlinear control systems.

For nonlinear systems (18.1), the Koopman operator @ is defined as follows:

w&(z1) = E(zir1) = E(f (2, w)), (18.9)

where £(-) is an observation function.

The dynamic mode decomposition (DMD) method provides a finite-dimensional
approximation to the Koopman operator @ [15]. The state and input data in the
DMD algorithm need to be collected from the nonlinear system. Then, the state

matrix identification is
Zp=Ilz122 - zZm]

Zh=l1z223 Zus1] (18.10)
Vb=1[viva--- vyl

where Zp € RPM 75 € RM v, € R™M and M is an integer.
The linear approximation of the nonlinear dynamics can be expressed as

Zp

Zh=ApZp+ BpVp=[Ap Bp | [VD

] =GP, (18.11)

where G = [Ap Bp|and ® = [Zp Vp]'.
Note that the state matrix G can be obtained by solving the following least-square
optimization problem:
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minimize |z} —Go|,. (18.12)

where ||-|| » denotes the Frobenius norm.
The problem (18.12) can be solved using the pseudo-inverse matrix of @, i.e.:

G =Z}o, (18.13)

where | denotes the Moore-pseudo-inverse.
The singular value decomposition of ® is as follows:

®=[zp Vo]
=UxVv’,

where U € RO+mxatm) 51 ¢ Rkmxntm) and v g RM*(tm)
Then, matrix G can be obtained by the following approximation:

G~ ZzZpve U’
= ZpvE'[U U],

where U, € Rtmxn 7, ¢ Rotm)xm
That is,

Rewrite Z}; = ApZp + BpVp as

(2223 - zmn1 1 =Aplz1 22 -+ zm ]+ Bplvi va - vy 1.

Then, the linear model of the nonlinear system can be obtained as
Zkr1 = Apzi + Bpug + wy, (18.14)

where wy is the deviation between true value and its approximate value of sys-
tem (18.1). Note that the presence of modeling error wy is unavoidable due to the
finite-dimensional approximation using the Koopman operator theory.

Assume that wy is amplitude bounded, namely:

wk€W={wk eER" : JJwilloo < wmax}

)

where W is a compact set and 0 € W.



18 Terminal Set of Nonlinear Model Predictive Control with Koopman Operators 283

18.3.1 Terminal Set of Nonlinear Systems

For the Koopman linear model (~ 18.14)~, assume that there exists a feedback control
lgw v=Kpz such that AX := Ap + BpKp is asymptotically stable. Define Q7, =
E+K gF K p, then the terminal gain K p and the terminal matrix Pp satisfy [16]

(A%)" Pp (Ak) — Pp < — Q% (18.15)

with Pp € R"*" and Pp, is positive definite.

Based on the Koopman linear model with the bounded disturbance wy, a maximal
robust positive invariant set can be chosen as the terminal set. The maximal robust
positive invariant set is defined as follows.

Definition 18.1 (Robust positive invariant set [17]): The set Zf is a robust positive
invariant set of the uncertain system (18.14),if (Ap + BpKp)z + wy € Z; for any
2k € Zf and wy € W.

Definition 18.2 (Maximal robust positive invariant set [17]): The robust positive
invariant set Zy is the maximal robust positive invariant set of the uncertain sys-

tem (18.14), if Z; is included in all robust positive invariant set of the uncertain
system (18.14).

The maximal and polytopic positive invariant set can be described as
Zy:={zeR"Az < b, A, e R, b, e R"}.

Note that in order to obtain the maximal robust positive invariant set, the one-step
backward reachable operator is defined as follows[17]:

Pre (Q)={zx € Z|FKpzx € V:(Ap+BpKp) zx + wr € 2, Yw, € W}, (18.16)

where €2 is a robust positive invariant set of system (18.14), Pre (€2) is referred to as
the one-step backward reachable set of the set €2. Note that Pre (€2) can be computed
by Multi-Parametric Toolbox 3 [18].

By using (18.16), a maximal robust positive invariant set is computed by the
iteration of Algorithm 18.1. Further, the terminal set of the nonlinear system (18.1)
can be obtained by choosing [17]

Ls = Qoo (18.17)

where 2o is the maximum robust position invariant set of system (18.1), and the
terminal set Z ; satisfies [17]

(i) Zs C Z,Z; is closed and the equilibrium point (0, 0) € Z;
(i1) vy = Kpzxy C V, forall z; € Zy;
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Algorithm 18.1 Computation of the terminal set Z ;

Input: Z, V, W, Kp

Output: The terminal set Z f

1: Initialization. Qg = Z.

2: Iteration procedure. At any moment k > 0, Qi1 = Q N Pre ()

3: End condition. If Q41 = Qf, then set Qoo = Qp41, Zf := Quo. Else, setk = k + 1, and go to
Step 2.

(it) A%z € Z;.

Remark 18.1 Both the invariance of terminal sets and the cost from the end of the
prediction horizon to infinity are guaranteed by the terminal control law K pz, where
the linear control gain K is calculated by (18.15) offline.

18.4 Numerical Example

In this section, a nonlinear system is used to verify the effectiveness of the proposed
scheme, in which dynamics is

{z,iﬂ =zl +0.122 + 0.1ve (e + (1 — w)z)) 18.18)

2. =20 +0.1z) +0.1v (e — 4(1 — p)z3)

where € (0, 1). Terms of z = [zl ZZ]T and v represent the state and input, respec-
tively. Note that the nonlinear system (18.18) is unstable and its linearized system is
stabilizable. Moreover, the input and state of the system (18.18) are constrained as

—2<v<?2

EEEEH

Scenario 18.1 The parameter u© = 0.5.

The collected datasets consist of 20 episodes, each containing data of 400 time
steps. The initial state is randomly chosen within the range of [—1, 1], and the control
input is within the range of [—2, 2].

The matrices Ap, Bp, and the bounded disturbance wy by the Koopman operator
theory are calculated as

~ |: 1.0150 0.0965i| ~ [0.0500
, Bp=

Ap=] 0.0693 1.0379 0.1035]’ lwelloo=0.1
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The weighting matrices E and F in the optimization problem of MPC are given

as
05 0

E:[ 0 0.5}’ F=1.

Further, the terminal gain K and the terminal matrix Pp are calculated offline
by (18.15), and

12.1326 8.6059

KD_[1.3006 1.6392], Pp _[ 2 6059 13.8252] .

As a comparison, the matrices A and B by the Jacobian linearization method at
the equilibrium point (0, 0) are calculated as

A 1.005 0.1002 B 0.0526
~ 1 0.1002 1.0005 |* © | 0.0526 |°

Similarly, the terminal gain K; and the terminal matrix G are calculated using
Lemma 18.1, that is,

K,=[21182.118], G = [ 116i§395296 1161.'5395296] , B=0.7.

Under the same input, a simulation experiment is implemented to compare the
evolution of the nonlinear system (18.18), the Koopman linear system, and the Jaco-
bian linearization system. The simulation results are shown in Fig. 18.1. It can be seen
that the Koopman linear model and the Jacobian linearization model can accurately
approximate the nonlinear system (18.18).

1 2

Comparison - z Comparison - z

7 —Nonlinear system 4 T —— Nonlinear system
- -Koopr.nan .oper?tor. Y — =Koopman operator
6t = -Jacobian linearization II 1 6 = =Jacobian linearization
Y, 5/ 38
5} ) .
J/ 36| 47
4r 341 4
L p j .
4 4 3.2 \
4 L
3l {3 22 23 24
16 17 N )
2 -
1 L
1 .
0 0.5 1 1.5 2 2.5 3 0 0.5 1 15 2 25 3
Time 3] Time 3]

Fig. 18.1 Scenario 18.1 Validation of the Koopman linear model and the Jacobian linearization
model (© = 0.5)
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- - Jacobian linearization 0.2
—Koopman operator
1
0.5 === g
~,
T St T > ¥
0 i
g _‘; 2 25 3
-0.5 — Jacobian linearization| |
— -Koopman operator
= -1 - : - -
: ’ 0 2 4 6 8 10
-1 -0.5 0 0.5 1 Time |s]
(a) Comparison of terminal sets (b) Comparison of dynamic response of the
system: v
0.8 T T T T 0.05
—Jacobian linearization
— -Koopman operator ot Jamm—
0.6 T \
x10° 0.05} x10°
J 0
-1
N ™
N \ Q 0.1 2 /
<N N 3r
-0.15¢ 5 55 6
48 5
—Jacobian linearization
-0.21 K B 1
- =Koopman operator
0.2 L L L L -0.25 L L L L
0 2 4 6 8 10 0 2 4 6 8 10
Time [s] Time [s]

(c) Comparison of dynamic response of the (d) Comparison of dynamic response of the
system: 2t system: z

Fig. 18.2 Simulation results of Scenario 18.1 for the initial state zo = [0.774 — 0.222]7 and the
prediction horizon N, = 15

The terminal set Z ¢ computed based on the Koopman linear model with the
bounded disturbance wy and the terminal set Z; computed based on the Jacobian
linearization model are shown in Fig. 18.2a. It can be found that the terminal set
Zf computed based on the Koopman linear model is larger. Figure 18.2b—d shows
the evolution of control input, and the dynamic response of the system at the initial
state zo = [0.774 — 0.222]7, while the prediction horizon N » = 15. The dynamic
response of the system with the terminal ingredients obtained based on the Koopman
linear model is marked as the red solid line, and the dynamic response of the system
with the terminal ingredients obtained based on the Jacobian linearization model
is marked as the blue dashed line. It can be observed that the dynamic response
trajectory of the system can asymptotically converge to the equilibrium point within
the control input limitations.

Figure 18.3 shows the dynamic response of the system at the initial state zg =
[1 — 117, while the prediction horizon N » = 10. Figure 18.3a shows that the control
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—Jacobian linearization
— -Koopman operator

— Jacobian linearization
- -Koopman operator

Time |[s] Time [s] Time [s

(a) Comparison of dynamic (b) Comparison of dynamic (¢) Comparison of dynamic
response of the system: v response of the system: 2t response of the system: 22

Fig. 18.3 Simulation results of Scenario 18.1 for the initial state zo = [1 — 1]7 and the prediction
horizon N, = 10

0.1
1 = 0 R
.
0.05 0.8 ‘\ 0.2 —+
\ ' .
. 0.6 1 04t
= Oy e e === N \ N 1
\ P 04r Y -0.6f !
\ - 1
-~ Al ]
-0.05 0.2 | -0.8[
0 R EE P S Al
01
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Time [s Time [s] Time [s]

(a) Comparison of dynamic (b) Comparison of dynamic (¢) Comparison of dynamic
response of the system: v response of the system: 2t response of the system: 22

Fig. 18.4 Simulation results of Scenario 18.1 for the initial state zo = [1 — 1]7 and the prediction
horizon N, =5

inputs at the initial moment solved by the Problem 18.1 with the terminal ingredients
obtained based on the Koopman linear model is smoother than using the terminal
ingredients obtained based on the Jacobian linearization model. However, while the
prediction horizon N, =5, Problem 18.1 with the terminal ingredients obtained
based on the Jacobian linearization model has no feasible solution at the initial
moment. Problem 18.1 with the terminal ingredients obtained based on the Koopman
linear model has feasible solution at the initial time instant. Figure 18.4 shows the
simulation results of the proposed control scheme for the initial state zyg = [1 — 1]7
while N, = 5.

Scenario 18.2 The parameter u = 0.8.

The collected datasets consist of 25 episodes, each containing data of 610 time
steps. The initial state is randomly chosen within the range of [—1, 1], and the control
input is allowed within the range of [—2, 2].

The matrices A p, Bp and the bounded disturbance wy by the Koopman operator
theory are calculated as

- [1.00610.09937 = [0.0840
AD_[O.O968 1.0130} ’ BD_[0.0875]’ lwelloo=0.1
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The weighting matrices E, F and the prediction horizon N » in the optimization
problem of MPC are given as

- 10 -
E=[01], F=1, N,=15.

Further, the terminal gain K and the terminal matrix Pp are calculated by (18.15)
offline, that is,

10.0617 7.4326

KD=[ 1.3116 1.3718] , Pp — |: 7 4306 10.7298] .

As a comparison, the matrices A and B by the Jacobian linearization method at
the equilibrium point (0, 0) are calculated as

A 1.005 0.1002 B 0.0841
~10.1002 1.0005 |* 7 | 0.0841 |°

Similarly, the terminal gain K; and the terminal matrix G are calculated using
Lemma 18.1 as

9.6999 6.9486

K,=[1.29011.3062], G — [6.9486 08901

} , B=5.2035.

While © = 0.8, the simulation experimental result is shown in Figs. 18.5 and
18.6. Figure 18.5 shows that the Koopman linear model and the Jacobian linearization
model can accurately approximate the nonlinear system (18.18) under Scenario 18.2.
Figure 18.4a shows that the proposed method can obtain a larger terminal set under

Comparison - 2! Comparison - 2z?

101 10t
—Nonlinear system —Nonlinear system /
— -Koopman operator — -Koopman operator
8+ |= =Jacobian linearization 1 8 |- -Jacobian linearization
51 61
6r 5
4.9
4.8 4+
4+ 4.7
2 L
2 L
O L
0 1 2 3 0 1 2 3
Time [s] Time [s]

Fig. 18.5 Scenario 18.2 Validation of the Koopman linear model and the Jacobian linearization
model (1 = 0.8)
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- - Jacobian linearization - . —
—Koopman operator —Jacobian linearization
1 —— — -Koopman operator
0.5 ; Fy
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1 ¥ =
\ \
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\ 1
A 1
¥ i
-0.5 ¥ /
A N— == = ‘
0 2 4 6 8 10
-1 -0.5 0 0.5 1 Time [3]

(a) Comparison of the terminal set  (b) Comparison of dynamic response of the

system: v
0.2 ‘ ‘ ‘ ‘ 0.2
0 L
N N0
-0.2 - -
-0.02 F L7
T 04 -0.03| _~ %
-0.04¢
-0.6
3.2343.6 15 2
-0.8 —Jacobian linearization —Jacobian linearization| 1
— -Koopman operator — -Koopman operator
-1 : ‘ : : -1 : ‘ :
0 2 4 6 8 10 0 2 4 6 8 10
Time [s] Time [s]

(c) Comparison of dynamic response of the (d) Comparison of dynamic response of the
system: 2t system: 22

Fig. 18.6 Simulation results of Scenario 18.2 for the initial state zg = [—0.98 — 0.82]7 and the
prediction horizon N, = 15

Scenario 18.2. Figure 18.4b—d shows that the dynamic response trajectory of the
system can asymptotically converge to the equilibrium point under the control input
limitations, where the initial state of the system is set as zo = [—0.98 — 0.82]7.

18.5 Conclusion

In this paper, a scheme to solve the terminal set of model predictive control of non-
linear systems with constraints was proposed. The considered nonlinear system was
approximated by a Koopman operator dynamics model, which was a linear system
with bounded disturbances. Then, an algorithm to offline determine the terminal cost,
terminal set, and terminal control law was developed, where the terminal set was a
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maximal robust invariant set of the linear dynamical model with the terminal control
law, and the terminal penalty was the related cost function. A simulation example
under different scenarios demonstrated the effectiveness of the proposed scheme.

Funding This work was supported by the National Natural Science Foundation of
China (No. U62473167) and the Science Foundation of Jilin Province
(N0.20240402079GH), China.
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